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ABSTRACT

In the near future a new generation of CCD based galaxy surveys will

enable high precision determination of the N -point correlation functions. The

resulting information will help to resolve the ambiguities associated with

two-point correlation functions thus constraining theories of structure formation,

biasing, and Gaussianity of initial conditions independently of the value of


. As one the most successful methods to extract higher order correlations

is based on measuring the distribution of counts in cells, this work presents

an advanced way of measuring it with unprecedented accuracy. Szapudi and

Colombi (1996, hereafter SC96) identi�ed the main sources of theoretical errors

in extracting counts in cells from galaxy catalogs. One of these sources, termed

as measurement error, stems from the fact that conventional methods use a

�nite number of sampling cells to estimate counts in cells. This e�ect can

be circumvented by using an in�nite number of cells. This paper presents an

algorithm, which, in practice achieves this goal, i.e. it is equivalent of throwing

an in�nite number of sampling cells in �nite time. The errors associated

with sampling cells are completely eliminated by this procedure which will be

essential for the accurate analysis of future surveys.

Subject headings: large scale structure of the universe | methods: numerical
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1. Introduction

As direct measurement of the higher order correlation functions (ex. Peebles 1980) is

complicated for N > 4 because of the combinatorial explosion of terms, accurate methods

based on counts in cells became crucial for understanding higher order statistics of the

distribution of galaxies (Peebles 1980, Gazta~naga 1992, Bouchet et al. 1993, Gazta~naga

1994, Colombi et al. 1995, Szapudi, Meiksin & Nichol 1996, hereafter SMN). The most

successful method calculates the factorial moments and cumulants from the distribution of

galaxy counts in cells. The resulting cumulants, SN 's, in turn can be compared with results

from perturbation theory (Peebles 1980, Juszkiewicz, Bouchet, & Colombi 1993, Bernardeau

1992, Bernardeau 1994), N -body simulations, and the theory gravitational statistics based

on the BBKGY equations (Davis & Peebles 1977, Peebles 1980, Colombi et al. 1995, Baugh,

Gazta~naga, & Efstathiou 1995, Szapudi, Quinn, Stadel, & Lake 1997). These theories

assuming gravity and Gaussian initial conditions predict a certain set of cumulants, SN 's,

while non-Gaussian initial conditions (Colombi 1992), and biasing (Fry & Gazta~naga 1994)

have di�erent predictions. Therefore high precision determination of the SN 's in fully

sampled CCD based catalogs, such as the future SDSS, will be crucial in resolving the

ambiguities associated with the two-point correlation functions (and its reincarnations)

to constrain theories of structure formation, biasing, and the nature of initial conditions.

This is the motivation for the method presented here to extract counts in cells with

unprecedented accuracy by diminishing the errors associated with sampling cells.

SC96 examined in detail the problem of errors on statistics related to counts in cells.

They found, that theoretical errors fall into two distinct classes: cosmic errors (including

�nite volume e�ects, discreteness e�ects, and edge e�ects), and measurement errors. While

the former is an inherent property of the galaxy catalog at hand, thus can be improved upon

only by creating a larger, denser catalog, the second one can be eliminated in principle by
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throwing an in�nite number of cells. As discussed in SC96, the number of cells one needs to

throw (\number of independent cells") depends on the statistic and scale at question. The

asymptotic behavior of the errors is proportional 1=C, where C is the number of sampling

cells, with the constant of proportionality increasing toward higher order quantities and

smaller scales. While at least massive oversampling is recommended to control the errors

up to a certain order, only in�nite sampling makes the measurement error term completely

disappear for all order. Surprisingly, in�nite sampling can be achieved in practice. This

work presents such method with moderate CPU investment compared to the alternative of

mending the traditional procedure with massive oversampling. The next section describes

the algorithm, in x3 evaluates a practical implementation, presents measurements, and

discusses the relevance of the results.

2. The Algorithm

The basic observation underlying the method is that the measurement of counts in cells

by throwing an in�nite number of random cells is equivalent to a series of integrals over

step functions. These can be evaluated to arbitrary precision without actually throwing

any cells. Thus the traditional way of throwing random cells corresponds to a Monte

Carlo integration, while the other popular method involving a grid is equivalent to Euler's

formula. Here the exact calculation is proposed for ultimate accuracy.

Let me de�ne the following set of functions

fN (x) =

8><
>:

1 if M = N

0 otherwise
(1)

where M is the number of objects within a cell centered on x. Clearly the estimator for PN

is

PN ' lim
C!�>1

1

C

X
fN(xi) =

Z
V
d3xfN(x); (2)
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where C the number of random cells at positions xi tends to in�nity, and the Monte Carlo

realization of the integral approaches the integral itself. Obviously, calculating the integral

is equivalent to throwing an in�nite number of sampling cells. Exact calculation is possible

because the function fN is piecewise constant. Note also that
P
fN (x) = 1 for any x,

therefore only one of the fN 's can be non-zero. Also, for any �nite galaxy catalog, there

exists a maximum number in the galaxy cell counts (for instance it is bounded by the

total number of objects). These two properties facilitate the computation of all the
R
fN 's

simultaneously.

A geometric interpretation of the above idea is most useful to devise an algorithm

to calculate the needed integrals exactly. Figure 1. illustrates the problem of measuring

counts in cells for a special con�guration. There are four points in a rectangular box.

Around each object (large dots) a square is drawn, identical to the sampling cell used for

counts in cells. The possible centers of random cells all lie within the dashed line, which

follows the boundary of the bounding box. Since the square around each point corresponds

to the possible centers of (random) cells containing that same point, the question can be

reformulated in the following way: let us partition the area of the possible centers of cells

according to the overlap properties of the cells drawn around the objects. If N squares

overlap in a partition, then fN = 1 throughout the partition, and the rest of the fj 's are

all zero. This is illustrated with di�erent shadings on the �gure. Thus the problem of

calculating the integral exactly is equivalent to �nding the sum of areas in the partitions for

each N .

The above considerations, although illustrated with square cells, apply to any cell

shape, and for �nite number of points. However, it is easiest to determine overlaps of

rectangular cells (in any dimension), therefore the rest of the paper will be restricted to

rectangular shape. This is not a serious restriction, because the shape dependence is not
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expected to be severe in the galaxy distribution, even though spherical cells do have some

theoretical advantage such as being directionless.

One obvious possibility for calculating the needed overlaps is a tree data structure

(similar to a tree N -body code) to �nd all the neighbors of a point for determining

the overlaps in an adaptive mesh. I found, however, that the 'sweep' paradigm from

computational geometry can be used to construct a simpler and more memory e�cient

algorithm. This can also be thought of as an adaptive grid covering the total area, however,

only the part immediately needed for the calculation is stored in memory. For simplicity,

I refer to the con�guration on Figure 1. in the following description of the method. The

calculation for any con�guration should be obvious from this.

Imagine a rigid vertical line moving slowly from the left of Figure 1. towards the right;

the boundary can be ignored temporarily. Before the line touches any of the squares, it

sweeps through an area with f0 = 1. Therefore at the point of �rst contact all the swept

area contributes to
R
f0 and can be recorded. After the contact the line is divided into

segments sweeping through areas with f0 = 1 and f1 = 1 respectively. The boundaries of

these segments can be imagined as two markers on the line, corresponding to the upper and

lower corner the square being touched. As the sweep continues, the results can be recorded

at any contact with the side of a square during the movement of the line: the areas swept

are assigned according to the markers on the line to di�erent
R
fN 's. This is done with a one

dimensional sweep on the line counting the two kinds of markers. Then the segmentation

of the line is updated. Whenever the line makes contact with the left side of a square, two

markers are added, whenever it touches the right hand side of a square, the corresponding

markers are dropped. The boundaries and rectangular masks, can be trivially taken into

account by only starting to record the result of the sweep when entering the area of possible

centers. Non-rectangular masks can be converted to rectangular by putting them on a grid.
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If there are N objects in the plane, the above procedure will �nish after 2N updating.

The algorithm can be trivially generalized for arbitrary rectangles, any dimensions. For

instance in three dimensions the basic sweep is done with a plane, while the plane has to be

swept by a line after each contact. The generalization for circles, and spheres, or arbitrary

shapes, seems to be fairly complicated, although it might be possible.

3. Discussion

From the de�nition of the algorithm it follows that the required CPU time scales as

ND(d=L)D(D�1)=2 in D dimensions, where N is the number of objects, d=L is the ratio of

the scale of measurement to the characteristic survey length. Arti�cial galaxy catalogs

were generated using ran1 from Press et al. 1992 in a rectangle of 19 by 55 degrees,

matching exactly the dimensions of the EDSGC catalog as used by SMN. Figure 2. shows

the scaling measured for a family of two-dimensional catalogs. The dashed line shows the

approximate scaling t ' 2:8 10�8N2ddeg on both panels, which is in good agreement with

the expectations. The memory requirement is approximately linear with N .

The accuracy of the code can be judged by inspecting Figure 3. where a series of

measurements are shown in a two-dimensional arti�cial catalog with a million objects

in it. The theoretical Poisson distribution is shown with dotted, the in�nitely sampled

measurements with solid lines. The di�erent curves correspond to a series of scales ranging

from 0:016 to 2 degrees. The theoretical and measured curves agree perfectly with each

other. With massive oversampling, roughly 108 : : :1010 random cells would achieve the

same accuracy. Note, that Poisson distribution is actually simpler to measure accurately

than the long tailed distribution of the galaxy surveys because of the non-Gaussian error

distribution (SC96).
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The code was also applied to real galaxy data (SMN). On their Fig. 1. the traditional

method of calculating counts in cells on a single grid totally misses the shape of the

probability distribution. It was found that the in�nite oversampling provided by the

proposed algorithm was most essential on small scales, where Poisson noise can dominate

the signal. In this regime undersampling can severely underestimate the moments of the

distribution, especially for higher order. This e�ect can be understood in terms of the

theoretical results by SC96, where the \number of statistically independent cells" was found

to increase sharply toward smaller scales, and increasing order. Since the error distribution

is fairly skewed, from an ensemble of low sampled measurements many will underestimate

the moments, while a few will overestimate them substantially. The sum will still give

the right ensemble average identical to the in�nitely oversampled measurements. This

means that a particular undersampled measurement is likely to underestimate the moments

since the small number of sampling cells can miss a rare cluster with high probability.

Similarly, there is a small chance of largely overestimating the moments when, with a small

probability, a cell happens to hit a rare cluster exactly. In e�ect, this phenomenon can

cause the unbiased statistical estimator to give lower values for the moments. Only massive

oversampling, and preferably, the algorithm outlined in this work can yield accurate,

unbiased measurements.

As expected from the construction of the sweep, the CPU time for the real data of

SMN was of the same order as for an arti�cial catalog with same number of objects in

it. The CPU time comparison with the alternative of throwing large number of random

cells is ambiguous, since the e�ective number of sampling cells for the method of this work

is in�nity. On the data set of SMN the number of cells were increased in the traditional

algorithm using multiple oversampling grids until the resulting irreducible Nth moments do

not change signi�cantly. It was found that order of twenty times more CPU was appropriate

for up to 9th order. However, the results of the in�nite precision calculation are not only
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faster, but more accurate as well. The convergence of actually throwing a large number of

cells is slow because of the 1=C asymptotic.

While the above detailed tests were performed for the two-dimensional version of the

code, a three dimensional version was implemented as well. Because of the sharp increase in

CPU time, proportional to N3, this version is practical only for a moderate red shift survey

of tens of thousands of galaxies with widely available computers. Perhaps supercomputers

can remedy the situation somewhat, since the algorithm is naturally parallizable via domain

decomposition. For N -body simulations containing millions of particles, a pair of new

algorithms will be described elsewhere (Szapudi, Quinn, Stadel, & Lake 1997).

This paper presented a new method for the measurement of counts in cells, a quantity

central to higher order statistics. The new method is equivalent to throwing an in�nite

number of sampling cells in a traditional algorithm, and as such eliminates the contribution

to the \measurement errors" (SC96). This way the full 1 point information is extracted

from the data if the negligible e�ect of sampling di�erent orientations is disregarded. The

implementation of the code is signi�cantly more accurate, and orders of magnitude faster

than the traditional approach, making it a natural choice for analyzing future galaxy

surveys.

It is a pleasure to acknowledge discussions with S. Colombi, which motivated the need

of a method described in the present paper. I would like to thank A. Szalay for discussions,

and A. Stebbins for reading the manusript. I.S. was supported by DOE and NASA through

grant NAG-5-2788 at Fermilab.
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4. Figure Captions

Figure 1. Illustrates the geometric calculation of counts in cells. There are four points

within the solid boundary. The centers of square cells can lie within the dashed boundary.

Around each point a square is drawn to represent the possible centers of cells which contain

that point. The problem of counts in cells can now be reformulated as calculation of the

ratios of all overlap areas (represented with di�erent shadings on the �gure) within the

dashed boundary.

Figure 2. The CPU time of the measurements of counts in cells in arti�cial galaxy catalogs

is displayed. The solid line represents the actual measurements, while the dotted line is the

theoretical scaling, t ' 2:8 10�8N2ddeg, where the universal constant was \�t" by a few

trial. Panel a. displays the time as a function of the number of galaxies in the survey, while

ddeg is a parameter, doubling from 0:016 to 2 degrees from below. Panel b. displays t is a

function of ddeg, while N is 5 104; 105; 2 105; 2:9 105; 4 105, and 106 from below.

Figure 3. Shows the measurement of counts in cells in an arti�cial galaxy catalog of 19 by

55 degrees with N = 106 galaxies. The measurements are shown with solid lines, while

the dotted lines display the theoretical curves. The agreement shows the unprecedented

accuracy of the proposed method.
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